Что находится за пределами вселенной
Содержание:
- Какая наука изучает Вселенную?
- Что такое параллакс
- Сколько во Вселенной материи?
- Голограмма
- Теоретические модели[]
- Возраст Вселенной: 12,6 или 13,8 млрд лет?
- «Вояджер-1» и «Вояджер-2» путешествуют с 1977 года. «Вояджер-1» не покидал гелиосферу до августа 2012 года, а «Вояджер-2» — до ноября 2018-го.
- Современное представление о наблюдаемой Вселенной
- У вселенной нет границ
- Дальнейшее развитие космологии
- Пять веков Вселенной
- Внутри вселенского пузыря
- Уменьшая масштабы
- Происхождение и эволюция
- Только вперед?
- Что находится за пределами Вселенной?
Какая наука изучает Вселенную?
Астрономия изучает Вселенную, расположение, движение, происхождение небесных тел и все, что связано с космосом. А ученые, исследующие все это, называются астрономами. Они изучают Солнце, звезды. Луну, планеты Солнечной системы, метеориты, кометы и многие другие небесные тела.
Изучая Вселенную, астрономы шаг за шагом проникали все дальше в ее таинственные глубины. Поняв и уточнив строение Солнечной системы, ученые обратились к Млечному Пути — гигантскому «содружеству» звезд и межзвездного вещества, существующему по особым «правилам». А следующий этап — открытие и исследование других звездных систем, похожих и непохожих на нашу, оказался крайне сложным. Ведь речь шла о расстояниях в сотни тысяч и миллионы световых лет!
А ведь еще в начале 20 в. не все астрономы верили в существование звезд и звездных систем за пределами нашей Галактики. И лишь с появлением сверхмощных телескопов нового поколения удалось измерить расстояния до самых отдаленных туманностей и галактик и хотя бы в общих чертах понять, как выглядит Вселенная «в целом».
Что такое параллакс
Телескопы являются лишь одним из инструментов для измерения космических расстояний и не всегда способны справится с этим заданием: чем дальше находится объект, расстояние до которого мы хотим измерить, тем сложнее это сделать. Радиотелескопы отлично подходят для измерения расстояний и проведения наблюдений лишь внутри нашей Солнечной системы. Они действительно способны предоставлять очень точные данные. Но стоит только направить их взор за пределы Солнечной системы, как их эффективность резко сокращается. Ввиду всех этих проблем астрономы решили прибегнуть к другому методу измерения расстояния — параллаксу.
Что такое параллакс? Объясним на простом примере. Закройте сначала один глаз и посмотрите на какой-нибудь объект, а затем закройте другой глаз и посмотрите снова на этот же объект. Заметили небольшое «изменение в положении» объекта? Этот «сдвиг» и называется параллаксом, методом, который используется для определения расстояния в космосе. Метод отлично работает, когда речь идет о звездах, находящихся в относительной близости от нас — примерно в радиусе 100 световых лет. Но когда и этот метод становится малоэффективным, ученые прибегают к другим.
Следующий способ определения расстояния носит название «метод главной последовательности». Он основан на наших знаниях о том, как со временем изменяются звезды определенных размеров. Сначала ученые определяют яркость и цвет звезды, а затем сравнивают показатели с ближайшими звездами, обладающими аналогичными характеристиками, выводя на основе этих данных приблизительное расстояние. Опять же, данный метод весьма ограничен и работает только в случае звезд, принадлежащих нашей галактике, или тех, которые находятся в радиусе 100 000 световых лет.
Чтобы заглянуть дальше, астрономы полагаются на метод измерения по цефеидам. Он основан на открытии американского астронома Генриетты Суон Ливитт, которая обнаружила зависимость между периодом изменения блеска и светимостью звезды. Благодаря этому методы многие астрономы смогли высчитать расстояния до звезд не только внутри нашей галактики, но и за ее пределами. В некоторых случаях речь идет о дистанциях в 10 миллионов световых лет.
Сколько во Вселенной материи?
Астрофизики считают, что около 40% обычной материи, из которой состоят звезды, планеты и галактики, оставалось незамеченной (на протяжении 20 лет), скрытой в виде горячего газа в сетях космической паутины. Напомним, что космическая паутина состоит из галактик, распределенных по всей Вселенной в виде сложной сети узлов, соединенных нитями, которые, в свою очередь, разделены пустотами. Подробнее о том, что такое галактические нити и космическая паутина, читайте в нашем материале.
Это недостающие барионы, скрытые в нитевидной структуре космической паутины и пытались обнаружить французские исследователи. Они провели статистический анализ, в ходе которого им впервые удалось выявить рентгеновское излучение горячих барионов в галактических нитях. Команда использовала пространственную корреляцию между положением нитей и связанным с ними рентгеновским излучением, чтобы предоставить доказательства присутствия горячего газа в космической паутине и впервые измерить его температуру.
Космическая паутина – это гигантское скопление галактик, соединенное между собой пустотами.
Полученные результаты подтверждают более ранние выводы той же исследовательской группы, основанные на косвенном обнаружении горячего газа в космической паутине путем его влияния на космическое фоновое микроволновое излучение (реликтовое излучение). Это открытие может проложить путь к более детальным исследованиям, использующим более качественные данные, чтобы проверить эволюцию газа в нитевидной структуре космической паутины. В общем, работы у ученых еще очень и очень много.
Возможно, мы так и не сможем разгадать все тайны Вселенной.
Кстати, недавно с помощью рентгеновской обсерватории Европейского космического агенства (ESA) XMM-Newton, астрономы показали, что скопления галактик в далекой Вселенной не похожи на те, что мы видим сегодня. Похоже, они испускают больше рентгеновских лучей, чем предполагали ученые. Оказалось, что эти скопления галактик изменили свой внешний вид со временем, а согласно расчетам, в прошлом скоплений галактик во Вселенной было меньше. Но о чем это говорит?
Исследователи считают, что в таком случае Вселенная должна быть средой высокой плотности, что противоречит современным представлениям. Этот вывод весьма спорен, потому что для объяснения этих результатов во Вселенной должно быть много материи – а это, в результате, оставляет мало места для темной энергии. Однако результаты французских исследователей показали, что эти выводы не такие уж и противоречивые. В конце-концов, если мы не могли разглядеть барионную материю в галактических нитях на протяжении 20 лет, кто знает, сколько еще материи Вселенной мы пока не видим?
Голограмма
Последний труд Стивена Хокинга, который был издан уже после смерти ученого, содержит одно очень занятное предположение. Оно говорит о том, что наша Вселенная может оказаться всего лишь голограммой какой-то первичной плоскости. Большой взрыв привел к появлению той самой плоскости, а наш мир – ее двумерная проекция. Именно двумерная, а 3D – это просто иллюзия. Все наше пространство-время и законы физики тоже представляют собой проекцию, искажение реальности.
Гипотеза довольно сложная, и ее даже понять тяжело, не то что доказать. Если вдруг она окажется правдой, это будет означать, что все законы природы, работающие в трехмерном мире, на самом деле так не работают и являются лишь искажением. Если за пределами нашей Вселенной лежит первичная плоскость, то мы даже представить себе не сможем, как в ней все устроено. Наряду с абсолютной пустотой и Мультивселенной эта теория, как и сотни других, являются больше философскими, чем научными. А что на самом деле находится за пределами Вселенной мы вряд ли когда-нибудь узнаем.
Теоретические модели[]
Современные космологические модели очень сложны и подчас внутренне противоречивы. К примеру, применяется ко Вселенной уравнения ОТО, хотя ОТО это локальная теория, и ее использование в масштабе Вселенной, мягко скажем, приводит к некоторого рода затруднениеям. Мы также свято верим, что темная материя холодная, т.е. увлекает с собой и барионную материю, но при этом считают, что в момент окончания темных веков ее флуктуация на два порядка больше, чем у барионной, список можно продолжить. Но на данный момент с таким положением дел приходиться мириться, т.к. лучшего объяснения наблюдательных данных пока не существует.
Сложность же таких моделей в том, что им приходится учитывать так еще плохо изученную темную энергию и темную материю. А многообразие возможных сценариев вынуждает обращаться к неким предположениям, принципам. Сейчас все согласны, что любая модель Вселенной должна удовлетворять так называемому космологическому принципу. Согласно ему в больших пространственных масштабах во Вселенной нет выделенных областей и направлений. Следствием такого принципа является однородность и изотропность материи во Вселенной на больших масштабах (>100Мпк).
В общем случае для построения модели применяются следущие теории и разделы физики:
- Равновесная статистическая физика, ее основные понятия и принципы, а также теория релетивистского газа.
- Теория гравитации (ОТО)
- Некоторые сведения из физики элементарных частиц: список основных частиц, их характеристики, типы взаимодействия, законы сохранения.
Теория Большого взрыва (теория горячей Вселенной)
Эта теория отвечает на вопросы: «Существовала ли Вселенная вечно или она появилась из чего-то? А если была рождена, то как она развивалась в первые секунды своей жизни?» Исторически, существовала и альтернативная теория, так называемая теория холодной Вселенной, но на данный момент веских причин для сомнения в теории Большого Взрыва нет.
В этой теории событие, положившее начало Вселенной, называется Большой взрыв, оставляя за скобками все вопросы о природе этого взрыва
Важно, что в момент взрыва вся энергия нынешней Вселенной содержалась в маленьком объеме, а значит температура была очень высокой. Именно благодаря высокой температуре и плотности появились первые элементарные частицы, которые при дальнейшем увеличении размера Вселенной и ее остывании начали складываться сначала в частицы посложнее, а потом дело дошло и до обычных протонов, нейтронов, позитронов и т.д
По ходу оставляя вопрос: «Почему античастиц оказалась меньше чем частиц?» — и вводя руками условие доминирования частиц над античастицами (по последним данным на миллион античастиц должно было приходиться миллион и одна частица), можно построить теорию о первичном нуклеосинтезе, которая, вцелом, неплохо ложится на наблюдаемые данные.
Так же довольно хорошо объясняется и реликтовый фон — это оставшееся наследство от момента, когда еще все вещество было ионизованным и не могло сопротивляться давлению света. Иными словами, реликтовый фон это остаток «фотосферы Вселенной».
Модель расширяющейся Вселенной
Модель расширяющейся Вселенной описывает и пытается объяснить сам факт расширения. В общем случае игнорируется, когда и почему Вселеннная начала расширяться. Т.е., теория Большого Взрыва — лишь частный случай Модели расширяющейся Вселенной. В основе любых моделей расширяющейся вселенной лежит ОТО и ее геометрический взгляд на природу гравитации. Выбор ОТО диктует нам выбор системы координат, относительно которой мы рассматриваем расширение Вселенной. А в ОТО изотропно расширяющуюся среду удобно рассматривать в системе координат, расширяющихся вместе с материей. Таким образом, расширение Вселенной формально сводится к изменению масштабного фактора всей координатной сетки, в узлах которой намертво «посажены» галактики. Такую систему координат называют сопутсвующей. Начало же отсчета обычно прикрепляют к наблюдателю.
Однако, в современном представлении рассматривать одну теорию от другой уже не имеет смысла. А такой подход вынуждает добавить инфляционную фазу.
Единой точки зрения, является ли Вселенная действительно бесконечной или конечной в пространстве и объёме, не существует. Тем не менее, наблюдаемая Вселенная, включающая все местоположения, которые могут воздействовать на нас с момента Большого взрыва, конечна, поскольку конечна скорость света. Границей космического светового горизонта является расстояние 24 Гигапарсека. Действительное расстояние до границы наблюдаемой Вселенной больше благодаря всё увеличивающейся скорости расширения Вселенной и оценивается в 93 миллиарда световых лет.
Возраст Вселенной: 12,6 или 13,8 млрд лет?
На 2020 год принято считать, что возраст Вселенной составляет около 13,8 млрд лет, но точнее определить эти цифры не так-то просто. Необходимо выполнить несколько ключевых расчетов и сравнить их друг с другом. Из-за разных подходов к этим расчетам результат тоже может различаться, что вызывает сомнение в его точности.
Дата Большого взрыва, породившего Вселенную, ранее рассчитывалась математическим методом при помощи компьютерного моделирования с использованием оценки расстояния до самых старых звезд, поведения галактик и скорости расширения Вселенной.
Поскольку Вселенная расширяется с большой скоростью, то чем дальше объект находится, тем быстрее он удаляется от нас. Расстояние до объекта со скоростью его удаления связывает постоянная Хаббла — именно этот коэффициент и использовали в качестве ключевого фактора в новом исследовании для определения точного возраста Вселенной. Постоянная Хаббла названа так в честь Эдвина Хаббла, который впервые рассчитал скорость расширения Вселенной в 1929 году.
Идея исследования, проведенного учеными из Университета Орегона в 2020 году, состояла в том, чтобы вычислить, сколько времени потребуется всем объектам, чтобы вернуться в начало. Для этого нужно определить, насколько быстро объекты удаляются от нас — тогда можно вычислить момент логического начала этого процесса, Большого взрыва.
Новое исследование утверждает, что Вселенная моложе почти на миллиард лет, а прежние расчеты были неточными.
Исследователи из Университета Орегона нанесли на карту расстояния до десятков других галактик. Они использовали новый подход, перекалибровав инструмент для измерения расстояний, известный как барионное соотношение Талли-Фишера, которое не зависит от постоянной Хаббла. Они взяли расстояния до 50 галактик, частично определенные с помощью космического телескопа «Спитцер», и использовали их для оценки расстояний до 95 других галактик.
По словам авторов исследования, такой подход лучше учитывает кривые массы и вращения галактик, чем данные, которые ранее использовались для уравнений, определяющих начало Большого Взрыва. Таким образом ученые, по их словам, смогли более точно вычислить постоянную Хаббла и, соответственно, возраст Вселенной.
В результате астрономы установили постоянную Хаббла, равную 75,1 (км/с)/Мпк. Это означает, что галактика, удаленная от Земли на один мегапарсек (примерно 3,3 млн световых лет), удаляется от нас со скоростью 75,1 км каждую секунду.
На основе новых данных исследователи подсчитали, что возраст Вселенной составляет всего 12,6 млрд лет, что намного меньше общепринятой цифры 13,8 млрд лет. И новый результат существенно выходит за пределы приемлемой для прежних вычислений погрешности. Работа опубликована в журнале Astrophysical Journal.
Что интересно, при этом исследования, основанные на измерении реликтового излучения, в результате определяют, что Вселенной все-таки около 13,8 млрд лет, а постоянная Хаббла равна примерно 67 км/с/Мпк. Но исследование команды из Орегона говорит, что все значения постоянной Хаббла ниже 70 могут быть исключены с 95-процентной вероятностью.
«Вояджер-1» и «Вояджер-2» путешествуют с 1977 года. «Вояджер-1» не покидал гелиосферу до августа 2012 года, а «Вояджер-2» — до ноября 2018-го.
«2» был запущен раньше «1», но 1-й аппарат первым прошел мимо Титана и покинул плоскость эклиптики (где находятся планеты/астероиды, попадающие на боковую орбиту, например, из-за силы тяжести). Прямо перед тем, как выключились камеры и зонды, «Вояджер» сфотографировал Землю, видимую как бледно-голубая точка.
Вы ее видите? Из трех основных «лучей» она находится в последнем справа, примерно на 3/5 пути вниз, шириной буквально в пиксель.
Nasa
Это мы. Все, кто КОГДА-ЛИБО жил, а не только те, кого вы знаете: семья, друзья, коллеги. Все люди, КОГДА-ЛИБО ЖИВШИЕ, побывали на этом пикселе, этой «бледно-голубой точке».
Nasa
Фото было сделано на расстоянии 6 миллиардов километров. «Вояджеры» были запущены за 23 года до этого — вот сколько времени им потребовалось, чтобы зайти так далеко. Теперь подумайте, как далеко они оба сейчас, преодолев ударную нагрузку и уйдя в межзвездное пространство? Если бы кто-то был в состоянии путешествовать со скоростью света, то до «Вояджера-1» можно было бы добраться за 21 час 01 мин. До 2-го — за 17 ч 25 мин 11 с. В обоих случаях меньше суток. А летели они туда с 1977 года.
Если бы мы могли путешествовать со скоростью света, нам все равно потребовалось бы 4 года, чтобы добраться до ближайших галактических звезд-соседей — Проксимы Центавра (4,244 св. года) или Альфы Центавра (4,37 св. лет). Для сравнения: ближайшая к Млечному Пути галактика находится от нас в 2,5 млн световых лет.
Насколько велика Солнечная система, показывает и «пояс астероидов». Многие представляют его так:
или так:
Очень близкое скопление метеоров/астероидов — кажется, мы могли бы прыгать с одного на другой. На самом деле между ними примерно 965 тыс. км — в 2,5 раза больше расстояния от Земли до Луны.
Пространство между объектами в Солнечной системе просто ошеломляет, а в Галактике и Вселенной — тем более. Они ЧЕРТОВСКИ огромны. — Грант Джонстон / Quora.com
Современное представление о наблюдаемой Вселенной
Наблюдаемой называют часть Вселенной, которая представляет собой прошлое относительно наблюдателя. Иначе говоря, это пространство, где материя смогла бы достичь расположения настоящей Земли.
У наблюдаемой Вселенной существует граница. Это, так называемый, космологический горизонт. Все, что на нём расположено имеет бесконечное красное смещение.
Эффект Доплера
Современные методики позволяют изучить часть такой Вселенной. Её назвали Метагалактикой.Теоретически за её пределами также находятся космические объекты.
Многие гипотезы построены на том, что наблюдаемая Вселенная является небольшой частью полной Вселенной.Сегодня наука занимается в основном изучение Метагалактики. Но учёные продолжают попытки выйти за её границы.
У вселенной нет границ
Артур Косовский, профессор физики Питтсбургского университета
«Одним из самых фундаментальных свойств вселенной является ее возраст, который, согласно различным измерениям, мы сегодня определяем как 13,7 миллиарда лет. Поскольку мы также знаем, что свет распространяется с постоянной скоростью, это означает, что луч света, который появился в ранние времени, прошел к сегодняшнему дню определенное расстояние (назовем это «расстоянием до горизонта» или «расстоянием Хаббла»). Поскольку ничто не может двигаться быстрее скорости света, расстояние Хаббла будет самым дальним расстоянием, которое мы когда-либо сможем наблюдать в принципе (если не обнаружим какой-либо способ обойти теорию относительности).
У нас есть источник света, идущий к нам почти с расстояния Хаббла: космическое микроволновое фоновое излучение. Мы знаем, что у вселенной не существует «края» на расстоянии до источника микроволнового излучения, которое находится почти на целой дистанции Хаббла от нас. Поэтому мы обычно предполагаем, что вселенная намного больше, чем нам собственный наблюдаемый объем Хаббла, и что настоящий край, который может существовать, находится намного дальше, чем мы когда-либо могли наблюдать. Возможно, это неверно: возможно, край вселенной находится сразу за дистанцией Хаббла от нас, а за ним — морские чудища. Но поскольку вся наблюдаемая нами вселенная везде относительно одинакова и однородна, такой поворот был бы очень странным.
Боюсь, у нас никогда не будет хорошего ответа на этот вопрос. У Вселенной может вообще не быть края, а если он и есть, то будет достаточно далеко, чтобы мы его никогда не увидели. Нам остается постигать лишь ту часть Вселенной, которую мы действительно можем наблюдать».
А у вас есть предположения, что находится на краю Вселенной? Расскажите в нашем чате в Телеграме.
Дальнейшее развитие космологии
По мере того, как учёные пытались решить этот вопрос, были открыты многие другие важнейшие составляющие Вселенной и разработаны различные её модели. Так в 1948 году Георгий Гамов ввёл гипотезу «о горячей Вселенной», которая в последствие превратится в теорию Большого взрыва. Открытие в 1965 году реликтового излучения подтвердило его догадки. Теперь астрономы могли наблюдать свет, дошедший с того момента, когда Вселенная стала прозрачна.
Тёмная материя, предсказанная в 1932 году Фрицом Цвикки, получила своё подтверждение в 1975 году. Тёмная материя фактически объясняет само существование галактик, галактических скоплений и самой Вселенской структуры в целом. Так учёные узнали, что большая часть массы Вселенной и вовсе невидима.
Из чего состоит Вселенная
Наконец, в 1998 году в ходе исследования расстояния до сверхновых типа Ia было открыто, что Вселенная расширяется с ускорением. Этот очередной поворотный момент в науке породил современное понимание о природе Вселенной. Введённый Эйнштейном и опровергнутый Фридманом космологический коэффициент снова нашёл своё место в модели Вселенной. Наличие космологического коэффициента (космологической постоянной) объясняет её ускоренное расширение. Для объяснения наличия космологической постоянной было введено понятия тёмной энергии – гипотетическое поле, содержащее большую часть массы Вселенной.
Пять веков Вселенной
Астрономы считают, что пять этапов эволюции являются удобным способом представления невероятно долгой жизни Вселенной. Согласитесь, во времена, когда нам известно всего 5% о видимой Вселенной (остальные 95% занимает таинственная темная материя, существование которой только предстоит доказать), судить об ее эволюции довольно сложно. Тем не менее, исследователи пытаются понять прошлое и настоящее Вселенной, объединив достижения науки и человеческой мысли двух последних столетий.
Если вам посчастливилось оказаться под ясным небом в темном месте безлунной ночью, то при взгляде вверх вас ждет великолепный космический пейзаж. С помощью обычного бинокля можно увидеть умопомрачительное небесное полотно из звезд и пятен света, которые накладываются друг на друга. Свет от этих звезд достигает нашей планеты преодолевая огромные космические расстояния и пробивается к нашим глазам через пространство–время. Такова Вселенная космологической эпохи, в которой мы живем. Она называется звездная эрой, но есть еще четыре других.
Изображение составлено исследователями Принстонского университета, основываясь на снимках, полученных космическими телескопами NASA
Существует множество способов рассмотреть и обсудить прошлое, настоящее и будущее Вселенной, но один из них больше других привлек внимание астрономов. Первая книга о пяти веках Вселенной была опубликована в 1999 году, под названием «Пять веков Вселенной: внутри физики вечности»
(последние обновления внесены в 2013 году). Авторы книги Фред Адамс и Грегори Лафлин дали название каждому из пяти веков:
- Первобытная эра
- Звездная эра
- Дегенеративная эра
- Эра Черных Дыр
- Темная эра
Необходимо отметить, что далеко не все ученые являются сторонниками этой теории. Тем не менее, многие астрономы находят разделение на пять этапов полезным способом обсуждения столь необычайно большого количества времени.
Внутри вселенского пузыря
Однако нам мало понять сам масштаб
Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровый диаметр
Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?
Разумеется, пред нами предстанет бесчисленное множество всевозможных галактик. Эллиптические, спиральные, иррегулярные. Некоторые области будут кишить ими, другие – пустовать. Главная особенность будет в том, что визуально все они будут неподвижны, пока неподвижными будем мы. Но стоит нам сделать шаг, как и сами галактики придут в движение. К примеру, если мы будем способны разглядеть в сантиметровом Млечном Пути микроскопическую Солнечную Систему, то сможем пронаблюдать её развитие. Отдалившись от нашей галактики на 600 метров, мы увидим протозвезду Солнце и протопланетный диск в момент формирования. Приближаясь к ней, мы увидим, как появляется Земля, зарождается жизнь и появляется человек. Точно также мы будем видеть, как видоизменяются и перемещаются галактики по мере того, как мы будем удаляться или приближаться к ним.
Следовательно, чем в более далёкие галактики мы будем вглядываться, тем более древними они будут для нас. Так самые далёкие галактики будут расположены от нас дальше 1300 метров, а на рубеже 1380 метров мы будем видеть уже реликтовое излучение. Правда, это расстояние для нас будет мнимым. Однако, по мере того, как будем приближаться к реликтовому излучению, мы будем видеть интересную картину. Естественно, мы будем наблюдать то, как из первоначального облака водорода будут образовываться и развиваться галактики. Когда же мы достигнем одну из этих образовавшихся галактик, то поймем, что преодолели вовсе не 1,375 километров, а все 4,57.
Уменьшая масштабы
В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.
Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру – от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в центр. На краю Вселенной всё также будет мерцать реликтовое излучение.
Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.
Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.
Происхождение и эволюция
Расширение космического пространства удаляет друг от друга звёзды, галактики и их скопления. В связи с этим существует теория, согласно которой в далёком прошлом они не просто располагались ближе друг к другу, а вообще были перемешаны и сжаты в единое вещество. Однако оно было настолько плотным и горячим, что началось общее расширение, в итоге и приведшее к образованию Вселенной.
С тех пор прошло приблизительно 14 миллиардов лет. За это время совершилось такое развитие:
- сформировалось гравитационное взаимодействие;
- зародились первые фундаментальные частицы;
- материя стала прозрачной для излучения;
- образовались ядра первичных элементов;
- появились звёзды, галактики, планетарные системы.
В итоге Вселенная сформировалась такой, какой человечество знает её сейчас. Её краткая модель выглядит следующим образом:
- 4,9% обычного вещества, знакомого на Земле.
- 26,8% тёмной материи, состоящей из тяжёлых частиц. Она не испускает электромагнитное излучение, что делает её прямое наблюдение практически неосуществимым.
- 68,3% тёмной энергии, инициирующей расширение пространства.
Образованная этими компонентами структура имеет гигантскую территорию. Реальный размер Вселенной современной наукой не установлен. Многие учёные настаивают на том, что она бесконечна. Однако если за условную границу принять расстояние до самого далёкого от Земли видимого объекта, то её масштабы составляют 45,7 миллиарда световых лет. Эта величина носит название радиуса Хаббла. Он не тождественен понятию конца мироздания, а только обозначает, что при прохождении этого расстояния быстрота удаления объекта от наблюдателя начинает превышать скорость света.
Только вперед?
Модель расширяющейся Вселенной описывает сам процесс ее расширения, не задаваясь вопросом: когда и почему Вселенная начала расширяться.
Еще более интересен вопрос: а не сменится ли рано или поздно ее расширение сжатием? Теоретически это вполне возможно, но зависит от определенных условий. Прежде всего — от средней плотности вещества, которое сейчас продолжает разлетаться.
Если эта плотность достаточно велика, то в конце концов силы гравитации одолеют инерцию разлета галактик, и начнется сжатие. Если мала — их «разбегание» будет продолжаться бесконечно.
Общая масса видимого вещества нашей Вселенной была подсчитана, и оказалось, что ее недостаточно, чтобы остановить расширение. Но ведь есть еще и «темная материя», общее количество которой оценить гораздо труднее.
Что находится за пределами Вселенной?
О, это вопрос очень интересный, но такой же неопределённый, как и предыдущий. Вообще неизвестно, есть ли у Вселенной пределы. Возможно, их нет. Возможно, они есть. Возможно, кроме нашей Вселенной есть и другие с иными свойствами материи, с отличными от наших законами природы и мировыми константами. Никто не может доказательно дать ответ на подобный вопрос.
Проблема заключается в том, что мы имеем возможность наблюдать Вселенную лишь на расстоянии в 13,3 миллиарда световых лет. Почему? Очень просто: мы же помним, что возраст Вселенной составляет 13,7 миллиардов лет. Учитывая, что наше наблюдение происходит с задержкой, равной времени, потраченному светом на прохождение соответствующего расстояния, мы не можем наблюдать Вселенную ранее того момента как она, собственно, появилась на свет. На этом расстоянии мы видим Вселенную ясельного возраста…